Universal Multi-objective Function for Optimising Superplastic-damage Constitutive Equations
نویسندگان
چکیده
Based on the dominated deformation mechanisms of superplastic materials, an assumption for micro-damage evolution is presented. Then, a set of uni®ed viscoplastic-damage constitutive equations is proposed to model material hardening due to the increase of dislocation density and grain growth, as well as material softening due to intergranular void nucleation and growth. The effects of the hardening and softening state variables on superplastic ¯ows are characterised. To overcome the dif®culties associated with the difference between predicted and experimental life spans and the variation in scales during multi-objective optimisations of material constants arising in the constitutive equations from experimental data, a unitless objective function has been formulated. This enables all experimental data to be involved in the optimisation. The constitutive equation set has been characterised for two superplastic alloys from experimental data using evolutionary programming (EP) optimisation techniques and the proposed method for formulating objective functions.
منابع مشابه
Determination of a set of constitutive equations for an Al-Li alloy at SPF conditions
Uniaxial tensile tests of aluminium-lithium alloy AA1420 were conducted at superplastic forming conditions. The mechanical properties of this Al-Li alloy were then modelled by a set of physicallybased constitutive equations. The constitutive equations describe the isotropic work hardening, recovery and damage by dislocation density changes and grain size evolution. Based on a recent upgraded op...
متن کاملFailure Prediction during uniaxial Superplastic Tension using Finite Element Method
Superplastic materials show a very high ductility. This is due to both peculiar process conditions and material intrinsic characteristics. However, a number of superplastic materials are subjected to cavitation during superplastic deformation. Evidently, extensive cavitation imposes significant limitations on their commercial application. The deformation and failure of superplastic sheet metals...
متن کاملA comparative study on constitutive modeling of hot deformation flow curves in AZ91 magnesium alloy
Modeling the flow curves of materials at elevated temperatures is the first step in mathematical simulation of the hot deformation processes of them. In this work a comparative study was provided to examine the capability of three different constitutive equations in modeling the hot deformation flow curves of AZ91 magnesium alloy. For this, the Arrhenius equation with strain dependent constants...
متن کاملDAMAGE AND PLASTICITY CONSTANTS OF CONVENTIONAL AND HIGH-STRENGTH CONCRETE PART II: STATISTICAL EQUATION DEVELOPMENT USING GENETIC PROGRAMMING
Several researchers have proved that the constitutive models of concrete based on combination of continuum damage and plasticity theories are able to reproduce the major aspects of concrete behavior. A problem of such damage-plasticity models is associated with the material constants which are needed to be determined before using the model. These constants are in fact the connectors of constitu...
متن کاملConstitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand
A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...
متن کامل